Minimum Number of Distinct Eigenvalues of Graphs

Shahla Nasserasr
School of Mathematical Sciences, Rochester Institute of Technology, USA
E-mail: shahla@mail.rit.edu

Abstract

For a graph G on n vertices, let $\mathcal{S}(G)$ be the set of all $n \times n$ real symmetric matrices such that their nonzero off-diagonal entries represent the weights of the edges of G. The inverse eigenvalue problem for a graph G (IEP-G) asks to determine all possible spectra of matrices in $\mathcal{S}(G)$.

A list of positive integers $\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ is realized as an ordered multiplicity list for the graph G if there is a matrix in $\mathcal{S}(G)$ with k distinct eigenvalues such that the i th largest eigenvalue has the multiplicity m_{i}, for $i=1,2, \ldots, k$.

One of the relaxations of the IEP-G is to determine the minimum length among all realizable multiplicity lists of a graph. This parameter is denoted by $q(G)$ and it is called the minimum number of distinct eigenvalues of G.

In this presentation, we will review interesting advances and techniques from a number of recent developments regarding $q(G)$.

References

[1] Bahman Ahmadi, Fatemeh Alinaghipour, Michael S. Cavers, Shaun Fallat, Karen Meagher, and Shahla Nasserasr. Minimum number of distinct eigenvalues of graphs. Electron. J. Linear Algebra, 26: 673-691 (2013).
[2] Leslie Hogben, Jephian C.-H. Lin, and Bryan L. Shader. Inverse problems and zero forcing for graphs. volume 270 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2022.
[3] Wayne Barrett, Shaun Fallat, H. Tracy Hall, Leslie Hogben, Jephian C.-H. Lin, and Bryan L. Shader. Generalizations of the strong Arnold property and the minimum number of distinct eigenvalues of a graph. Electron. J. Combin., 24(2): Paper No. 2.40, 28, (2017).

